If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2=86
We move all terms to the left:
y^2-(86)=0
a = 1; b = 0; c = -86;
Δ = b2-4ac
Δ = 02-4·1·(-86)
Δ = 344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{344}=\sqrt{4*86}=\sqrt{4}*\sqrt{86}=2\sqrt{86}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{86}}{2*1}=\frac{0-2\sqrt{86}}{2} =-\frac{2\sqrt{86}}{2} =-\sqrt{86} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{86}}{2*1}=\frac{0+2\sqrt{86}}{2} =\frac{2\sqrt{86}}{2} =\sqrt{86} $
| 15+5r=-9+7r | | w^2=86 | | -9y-10=-6y+10-5 | | 3(x-3)-6=6x-3(x-6) | | 8x+52=-8 | | 9d-2-8d=8d+5 | | 10x-2=5x-3 | | -3x=2x19 | | 4(1-x+3x=-2(x+1) | | (-3)/4(4+8x)=-45 | | -7-6c=-4c+9 | | -4(-2x+5)-5x+5=−24 | | -7g=-10-8g | | 9-2x=8x-3 | | 8-9b=2-10b | | 13=6+7a | | 18+2g=18+2(g) | | 5x-3+3x+23=180 | | 18+2g=18+2(3) | | 10g=-6+8g | | 180x(8-3=0 | | 8f=-5+7f | | 4x^2+-8x+-9=0 | | (5.626-7.14x)^(x/20-1)=0 | | 2x+7/5=1-3x/8 | | -9s+9=6s | | (5.626-7.14x)^((x/20)-1)=0 | | -6a-(6a-2)=-322 | | 3t+(t-2)=2-5t | | −9(x−2)=108 | | x−33=−3 | | -8-8n=10n |